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The  Five  La g ra n g e  P o in t s : 

PPaarrkkiinngg  PPllaacceess  iinn  SSppaaccee  
Part II: Mechanical Stability at Lagrange Points 

by Dwight E. Neuenschwander, Southern Nazarene University, Emeritus 

In Part I of this article, published in the Fall 2023 issue of 
Radiations, we explore finding Lagrange points. Now we continue 
this discussion by moving on to the mechanical stability at 
Lagrange points. You may recall that a Lagrange point is a location 
in the vicinity of a gravitationally bound, two-body system where a 
small object, such as a satellite, maintains a stationary position 
relative to the major bodies. The James Webb Space Telescope 
(JWST) is located at Lagrange point L2 in the Sun–Earth system.
Figures 1 and 2 are repeated from Part I below. 

FFiigguurree  11..  Top: Distance between the Sun and Earth. Bottom: JWST (the 
Webb) orbits the Sun 1.5 million kilometers away from the Earth at what is 

called the second Lagrange point or L2. Credit: NASA. 

FFiigguurree  22..  The coordinate system used to find Lagrange points. 

Criteria for Stability 

The Lagrange points offer sites of mechanical equilibrium to 
satellites or asteroids stationed there. Are these locations points of 
stable equilibrium-----or are they unstable? To approach this issue 
requires an examination of the second derivatives of 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦). 
From Eq. (24) of Part I, 

𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃) =  −
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1

𝑠𝑠𝑠𝑠1
 −  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠2
 −  

1
2 (𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2)𝜔𝜔𝜔𝜔2 ,    (41) 

where, according to Fig. 2, 

𝑠𝑠𝑠𝑠1 = [(𝑥𝑥𝑥𝑥 + 𝑟𝑟𝑟𝑟1)2 + 𝑦𝑦𝑦𝑦2]1/2   (42) 

and 
𝑠𝑠𝑠𝑠2 = [(𝑟𝑟𝑟𝑟2 − 𝑥𝑥𝑥𝑥)2 + 𝑦𝑦𝑦𝑦2]1/2.   (43) 

With respect to 𝑥𝑥𝑥𝑥 the second derivative reads 

𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 = −

2𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1

𝑠𝑠𝑠𝑠13
�
𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠1
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥 �

2

+  
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1

𝑠𝑠𝑠𝑠12
�
𝜕𝜕𝜕𝜕2𝑠𝑠𝑠𝑠1
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 �   −

2𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠23
�
𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠2
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥 �

2

+ 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠22
 �
𝜕𝜕𝜕𝜕2𝑠𝑠𝑠𝑠2
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 � −  𝜔𝜔𝜔𝜔2.   (44) 

Using Eqs. (42) and (43) to evaluate the derivatives of 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 
turns Eq. (44) into 

𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 = −

2𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1

𝑠𝑠𝑠𝑠13
�
𝑥𝑥𝑥𝑥 + 𝑟𝑟𝑟𝑟1
𝑠𝑠𝑠𝑠1

�
2

 −  
2𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠23
�
𝑥𝑥𝑥𝑥 − 𝑟𝑟𝑟𝑟2
𝑠𝑠𝑠𝑠2

�
2
− 𝜔𝜔𝜔𝜔2

  + 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1

𝑠𝑠𝑠𝑠13
�−  �

𝑥𝑥𝑥𝑥 + 𝑟𝑟𝑟𝑟1
𝑠𝑠𝑠𝑠1

�
2

+ 1�   +
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠23
�−�

𝑥𝑥𝑥𝑥 − 𝑟𝑟𝑟𝑟2
𝑠𝑠𝑠𝑠2

�
2

+ 1 � .    (45) 
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By similar reasoning we find 

𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2 = −

2𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1

𝑠𝑠𝑠𝑠13
�
𝑦𝑦𝑦𝑦
𝑠𝑠𝑠𝑠1
�
2

 −  
2𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠23
�
𝑦𝑦𝑦𝑦
𝑠𝑠𝑠𝑠2
�
2
− 𝜔𝜔𝜔𝜔2

 + 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1

𝑠𝑠𝑠𝑠13
�−  �

𝑦𝑦𝑦𝑦
𝑠𝑠𝑠𝑠1
�
2

+ 1�   +
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠23
�−�

𝑦𝑦𝑦𝑦
𝑠𝑠𝑠𝑠2
�
2

+ 1 � , (46) 

and recalling that the second derivatives commute, so that 
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔 𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦⁄ = 𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔 𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥⁄ ,  

𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥 = −

3𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1

𝑠𝑠𝑠𝑠13
�
𝑥𝑥𝑥𝑥 + 𝑟𝑟𝑟𝑟1
𝑠𝑠𝑠𝑠1

� �
𝑦𝑦𝑦𝑦
𝑠𝑠𝑠𝑠1
�  −  

3𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠23
�
𝑥𝑥𝑥𝑥 − 𝑟𝑟𝑟𝑟2
𝑠𝑠𝑠𝑠2

� �
𝑦𝑦𝑦𝑦
𝑠𝑠𝑠𝑠2
� .       (47)  

In pursuing the inferences of Eqs. (45---46), recall Eq. (14), 𝜔𝜔𝜔𝜔2 =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺/𝑎𝑎𝑎𝑎3. 
     At the Lagrange points L4 and L5, 𝑠𝑠𝑠𝑠1 = 𝑠𝑠𝑠𝑠2 = 𝑎𝑎𝑎𝑎; 
(𝑥𝑥𝑥𝑥 + 𝑟𝑟𝑟𝑟1) 𝑎𝑎𝑎𝑎 =  (𝑟𝑟𝑟𝑟2 − 𝑥𝑥𝑥𝑥) 𝑎𝑎𝑎𝑎⁄⁄ = cos 60o =  1 2⁄ ; and 𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎⁄ = sin 60o =
√3 2⁄ . Here Eqs. (45)---(47) yield, respectively,7

 �
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 �𝐿𝐿𝐿𝐿𝐿,   𝐿𝐿𝐿𝐿𝐿

= −
3
4
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑎𝑎𝑎𝑎3  ,   (48) 

�
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2 �𝐿𝐿𝐿𝐿𝐿,   𝐿𝐿𝐿𝐿𝐿

= −
9
4
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑎𝑎𝑎𝑎3  ,   (49) 

and 

�
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥�𝐿𝐿𝐿𝐿𝐿,   𝐿𝐿𝐿𝐿𝐿

= −
√27

4
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑎𝑎𝑎𝑎3 ,  (50) 

where 𝐺𝐺𝐺𝐺 ≡ (𝐺𝐺𝐺𝐺1 −𝐺𝐺𝐺𝐺2) 𝐺𝐺𝐺𝐺⁄ . Since all of these second derivatives are 
never positive, L4 and L5 are ‘‘summits’’ in the effective potential 
𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔, locations of unstable equilibrium. 
     Turning to L1, L2, and L3, from Fig. 2, here are the values of 𝑠𝑠𝑠𝑠1 
and 𝑠𝑠𝑠𝑠2 at these locations: 

  𝑠𝑠𝑠𝑠1 = 𝑥𝑥𝑥𝑥 + 𝑟𝑟𝑟𝑟1 at L1 and L2, 𝑠𝑠𝑠𝑠1 = |𝑥𝑥𝑥𝑥| − 𝑟𝑟𝑟𝑟1 =  −(𝑥𝑥𝑥𝑥 + 𝑟𝑟𝑟𝑟1) at L3; 

     𝑠𝑠𝑠𝑠2 =  𝑟𝑟𝑟𝑟2 − 𝑥𝑥𝑥𝑥 at L1, 𝑠𝑠𝑠𝑠2 = 𝑥𝑥𝑥𝑥 − 𝑟𝑟𝑟𝑟2 at L2, 𝑠𝑠𝑠𝑠2 = 𝑟𝑟𝑟𝑟2 + |𝑥𝑥𝑥𝑥| = 𝑟𝑟𝑟𝑟2 − 𝑥𝑥𝑥𝑥 at L3.  

With these relations, and since  𝑦𝑦𝑦𝑦 = 0 along the 𝑥𝑥𝑥𝑥-axis, the second 

derivatives of the effective potential for L1, L2, and L3 appear quite 

compact: 

�
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 �𝐿𝐿𝐿𝐿1𝐿𝐿𝐿𝐿𝐿3

= −2𝐺𝐺𝐺𝐺 𝐺
𝐺𝐺𝐺𝐺1

𝑠𝑠𝑠𝑠13
+
𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠23
� −

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑎𝑎𝑎𝑎2  ,   (51a) 

�
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2 �𝐿𝐿𝐿𝐿1𝐿 𝐿𝐿𝐿𝐿3

= 𝐺𝐺𝐺𝐺 𝐺
𝐺𝐺𝐺𝐺1

𝑠𝑠𝑠𝑠13
+
𝐺𝐺𝐺𝐺2

𝑠𝑠𝑠𝑠23
� −

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑎𝑎𝑎𝑎2  ,   (51b) 

and 

�
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥�𝐿𝐿𝐿𝐿1𝐿 𝐿𝐿𝐿𝐿3

= 0.    (51c) 

Recall Eq. (40a-c) from Part I: 

 𝐿𝐿𝐿𝐿1:     𝑟𝑟𝑟𝑟 ≈ 𝑎𝑎𝑎𝑎 �1 − �
𝛼𝛼𝛼𝛼
3
�
1 3⁄

�   (40a) 

 L2:    𝑟𝑟𝑟𝑟 ≈ 𝑎𝑎𝑎𝑎 �1 + �
𝛼𝛼𝛼𝛼
3
�
1 3⁄

�   (40b) 

 L3:    𝑟𝑟𝑟𝑟 ≈ 𝑎𝑎𝑎𝑎 𝑎1 +
𝛼𝛼𝛼𝛼
3�  .   (40c) 

The various values of 𝑟𝑟𝑟𝑟 in Eq. (40) are the values of |𝑥𝑥𝑥𝑥| in Eqs. (51a)–
(51c). For the Sun–Earth system, 𝐺𝐺𝐺𝐺1 ≈ 2 × 1030 kg, 𝐺𝐺𝐺𝐺2 ≈ 6 × 102𝐿 
kg, 𝑎𝑎𝑎𝑎 ≈ 1.5 × 1011 m. Using Eqs. (31), (32), and (40), along with 
the approximations that led to Eq. (40), when working out 
estimates for 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 for L1, we obtain8 

�
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 �𝐿𝐿𝐿𝐿1,   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ

≈  −10𝜔𝜔𝜔𝜔2 ,    (52) 

�
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2 �𝐿𝐿𝐿𝐿1,   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ

≈  3𝜔𝜔𝜔𝜔2 ,    (53) 

where 𝜔𝜔𝜔𝜔 = 2𝜋𝜋𝜋𝜋 rad/yr. A plot of 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) (Fig. 4) shows the 
neighborhood of L1 to be a saddle surface-----displacements in the 
𝑦𝑦𝑦𝑦 direction are subject to a restoring force, but displacements in 
𝑥𝑥𝑥𝑥 direction encounter a repulsive force. By a similar analysis, the 
neighborhoods of L2 and L3 are saddle surfaces. Figure 4 shows 
the contours in the 𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 plane slice of 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔 equipotential surfaces. 

FFiigguurree  44..  Equipotential surfaces in the 𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 plane for 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔 and the 
Roche lobe. Photo credit: NASA. 

     Near a star in a binary system the equipotential surfaces are 
essentially spheres centered on the star. But the centrifugal 
potential stretches the equipotential surfaces between the stars 
into a shape resembling a toy balloon. L1 is located at the narrow 
end of the ‘‘balloon.’’ The volume within the ‘‘balloon’’ that includes 
L1 is called the Roche lobe. If the star’s outer layers extend beyond 
the Roche lobe, that matter ‘‘slides’’ over the ‘‘saddle’’ onto the 
companion star. This phenomenon drives Type 1a supernovas in a 

) –
Sun–Earth
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star–white dwarf binary system. When the white dwarf grabs 
enough mass from the companion to exceed the Chandrasekhar 
limit (~1.4𝐺𝐺𝐺𝐺⊙), the white dwarf explodes. 
       We have seen that at all five Lagrange points, the second 
derivatives of 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔 are either negative for displacements in 
orthogonal directions, or describe saddle points. If this was the end 
of the story, a small body placed at a Lagrange point, when 
nudged off to one side, would be driven away from the region. The 
James Webb and other telescopes that are or have been parked 
at L2 must undergo small but frequent corrective maneuvers, like 
balancing a long pole vertically on the end of your nose. But that 
is not the entire story. Once the test particle of mass 𝑚𝑚𝑚𝑚′ begins 
sliding off the Lagrange point, it acquires a nonzero velocity vv and 
the Coriolis force kicks in. When that happens, as long as the 
gravitational and centrifugal forces still essentially cancel, Eq. 
(15)-----Newton’s second law transformed to a rotating reference 
frame-----is roughly 

−2𝑚𝑚𝑚𝑚′(𝝎𝝎𝝎𝝎 × 𝐯𝐯𝐯𝐯) ≈ 𝑚𝑚𝑚𝑚′𝐚𝐚𝐚𝐚.   (54) 

For simplicity, consider vv to be in the 𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 plane and recall that 𝝎𝝎𝝎𝝎 =
𝜔𝜔𝜔𝜔�̂�𝜔𝜔𝜔. A moment's reflection on the direction of the cross product 
−(𝝎𝝎𝝎𝝎 × 𝐯𝐯𝐯𝐯) shows that 𝑚𝑚𝑚𝑚′ will move in a circular orbit around the 
Lagrange point at some radius 𝑅𝑅𝑅𝑅, so that from Eqs. (15) and (54), 

2𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 ≈
𝜔𝜔𝜔𝜔2

𝑅𝑅𝑅𝑅  .   (55) 

Using 𝜔𝜔𝜔𝜔 = 𝑅𝑅𝑅𝑅𝜔𝜔𝜔𝜔′ for the orbital angular velocity 𝜔𝜔𝜔𝜔′ of 𝑚𝑚𝑚𝑚′ around the 
Lagrange point, this results in 𝜔𝜔𝜔𝜔′ = 2𝜔𝜔𝜔𝜔. This quantitative result 
must not be taken too seriously, but it is qualitatively suggestive. 
Let’s return to Eq. (15) and do a more thorough job with the Coriolis 
force included.   

Turning on the Coriolis Force 

     For this discussion let 𝐫𝐫𝐫𝐫𝑜𝑜𝑜𝑜 de note th e lo cation of  a La grange 
point relative to the center of mass, and consider a small 
displacement 𝜺𝜺𝜺𝜺 from it to a nearby position 𝐫𝐫𝐫𝐫, so that 

𝐫𝐫𝐫𝐫 =  𝐫𝐫𝐫𝐫𝑜𝑜𝑜𝑜 + 𝜺𝜺𝜺𝜺 ,    (56) 

where |𝜺𝜺𝜺𝜺| ≪  𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜. Write the 𝛼𝛼𝛼𝛼th component of Eq. (15) to first order 
in 𝜀𝜀𝜀𝜀. We need the Taylor series expansion of 𝐠𝐠𝐠𝐠 about 𝜺𝜺𝜺𝜺 = 𝟎𝟎𝟎𝟎. With 
repeated indices denoting summations (𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽 subscripts denote 𝑥𝑥𝑥𝑥 
or 𝑦𝑦𝑦𝑦 components) we obtain 

g𝛼𝛼𝛼𝛼(𝐫𝐫𝐫𝐫) =  g𝜶𝜶𝜶𝜶(𝐫𝐫𝐫𝐫𝑜𝑜𝑜𝑜) +  𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽 �
𝜕𝜕𝜕𝜕g𝛼𝛼𝛼𝛼
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽

�
𝟎𝟎𝟎𝟎

+ ⋯ 

  =  g𝜶𝜶𝜶𝜶(𝐫𝐫𝐫𝐫𝑜𝑜𝑜𝑜) −  𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽 �
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼
�
𝟎𝟎𝟎𝟎

+ ⋯  .     (57)

Notice that Eq. (57) takes derivatives of the gravitational potential 
𝜑𝜑𝜑𝜑 only (not 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔). Now to first order in 𝜺𝜺𝜺𝜺 the 𝛼𝛼𝛼𝛼th component of Eq. 
(15) is

g𝜶𝜶𝜶𝜶(𝐫𝐫𝐫𝐫𝑜𝑜𝑜𝑜) −  𝜀𝜀𝜀𝜀𝛽𝛽𝛽𝛽 �
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼
�
𝟎𝟎𝟎𝟎
− 2(𝝎𝝎𝝎𝝎 × �̇�𝜺𝜺𝜺)𝛼𝛼𝛼𝛼 −  {𝝎𝝎𝝎𝝎 × [𝝎𝝎𝝎𝝎 × (𝐫𝐫𝐫𝐫𝑜𝑜𝑜𝑜 + 𝜺𝜺𝜺𝜺)]}𝛼𝛼𝛼𝛼

= 𝜀𝜀𝜀𝜀�̈�𝛼𝛼𝛼  ,   (58)  

where dots denote time derivatives. Recalling that  
𝐠𝐠𝐠𝐠(𝐫𝐫𝐫𝐫𝒐𝒐𝒐𝒐) −𝝎𝝎𝝎𝝎 × (𝝎𝝎𝝎𝝎 × 𝐫𝐫𝐫𝐫𝒐𝒐𝒐𝒐) = 𝟎𝟎𝟎𝟎 locates a Lagrange point, for 𝑥𝑥𝑥𝑥 we are 
left with 

− 𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥 �
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

�
𝟎𝟎𝟎𝟎
− 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 �

𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

�
𝟎𝟎𝟎𝟎
− 2(𝝎𝝎𝝎𝝎 × �̇�𝜺𝜺𝜺)𝑥𝑥𝑥𝑥 − [𝝎𝝎𝝎𝝎 × (𝝎𝝎𝝎𝝎 × 𝜺𝜺𝜺𝜺)]𝒙𝒙𝒙𝒙

=  𝜀𝜀𝜀𝜀�̈�𝑥𝑥𝑥      (59) 
and for 𝑦𝑦𝑦𝑦 

−𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥 �
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

�
𝟎𝟎𝟎𝟎
− 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 �

𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2

�
𝟎𝟎𝟎𝟎
− 2(𝝎𝝎𝝎𝝎 × �̇�𝜺𝜺𝜺)𝑦𝑦𝑦𝑦 − [𝝎𝝎𝝎𝝎 × (𝝎𝝎𝝎𝝎 × 𝜺𝜺𝜺𝜺)]𝒚𝒚𝒚𝒚

=  𝜀𝜀𝜀𝜀�̈�𝑦𝑦𝑦 .     (60) 
In particular, with 𝛚𝛚𝛚𝛚 = 𝜔𝜔𝜔𝜔�̂�𝜔𝜔𝜔, 

𝝎𝝎𝝎𝝎 × �̇�𝜺𝜺𝜺 =  �
𝐢𝐢𝐢𝐢 �̂�𝐢𝐢𝐢 �̂�𝜔𝜔𝜔
0 0 𝜔𝜔𝜔𝜔
𝜀𝜀𝜀𝜀�̇�𝑥𝑥𝑥 𝜀𝜀𝜀𝜀�̇�𝑦𝑦𝑦 0

� =  𝜔𝜔𝜔𝜔𝜔−�̂�𝜔𝜔𝜔𝜀𝜀𝜀𝜀�̇�𝑦𝑦𝑦 + �̂�𝐢𝐢𝐢𝜀𝜀𝜀𝜀�̇�𝑥𝑥𝑥�   (61) 

and 
𝝎𝝎𝝎𝝎 × (𝝎𝝎𝝎𝝎 × 𝜺𝜺𝜺𝜺) =  −𝜔𝜔𝜔𝜔2𝜺𝜺𝜺𝜺 .    (62) 

Recalling that 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔 = 𝜑𝜑𝜑𝜑 − 𝑟𝑟𝑟𝑟2𝜔𝜔𝜔𝜔2 2⁄ , Eqs. (59) and (60) respectively 
become  

− 𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥 �
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 �𝟎𝟎𝟎𝟎

− 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 �
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥�𝟎𝟎𝟎𝟎

+ 2𝜔𝜔𝜔𝜔𝜀𝜀𝜀𝜀�̇�𝑦𝑦𝑦 =  𝜀𝜀𝜀𝜀�̈�𝑥𝑥𝑥   (63) 

and 

− 𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥 �
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥�𝟎𝟎𝟎𝟎

− 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 �
𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2 �𝟎𝟎𝟎𝟎

− 2𝜔𝜔𝜔𝜔𝜀𝜀𝜀𝜀�̇�𝑥𝑥𝑥 =  𝜀𝜀𝜀𝜀�̈�𝑦𝑦𝑦 .   (64) 

Again, let’s get a feel for the system‘s possible behavior by 
considering two oversimplified but suggestive special cases:  

1. If the second derivatives of 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔 conveniently vanished, Eqs.
(63) and (64) would reinforce the notion that a particle displaced
gently off a Lagrange point would orbit that point. To see this,
temporarily set the second derivatives of 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔 in Eqs. (63) and (64)
equal to zero, multiply Eq. (64) by 𝑖𝑖𝑖𝑖 = √−1 , and then add the two
equations. Let 𝑧𝑧𝑧𝑧 =  𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥 + 𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 , which leads to �̈�𝑧𝑧𝑧 + 2𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔�̇�𝑧𝑧𝑧 − 𝜔𝜔𝜔𝜔2𝑧𝑧𝑧𝑧 =
0, with solution 𝑧𝑧𝑧𝑧(𝑡𝑡𝑡𝑡) =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔𝐸𝐸𝐸𝐸, where 𝑅𝑅𝑅𝑅 = const. Then 𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥 =
(𝑧𝑧𝑧𝑧 + 𝑧𝑧𝑧𝑧∗) 2⁄ = 𝑅𝑅𝑅𝑅 cos(𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡) (where * denotes complex conjugate) and
𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 =  (𝑧𝑧𝑧𝑧 − 𝑧𝑧𝑧𝑧∗) 2𝑖𝑖𝑖𝑖⁄ =  −𝑅𝑅𝑅𝑅sin(𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡). These results indicate a circular
orbit of radius 𝑅𝑅𝑅𝑅 with the particle moving in the opposite sense of
the two-body system’s rotation.

denote the location of a Lagrange
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     2.  If the velocity terms were also absent, Eqs. (63) and (64) 
would produce 𝑧𝑧𝑧𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧2𝑧𝑧𝑧𝑧 = 0, so 𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 would mathematically 
go as 𝑒𝑒𝑒𝑒±𝜔𝜔𝜔𝜔𝐸𝐸𝐸𝐸 . But coming off a point of unstable equilibrium, we 
expect the physical solution to go as 𝑒𝑒𝑒𝑒+𝜔𝜔𝜔𝜔𝐸𝐸𝐸𝐸 , driving a particle away 
from the Lagrange point. 
     But again, these are merely suggestive, intuition-building, 
special-case musings. The dynamics includes all the terms in Eqs. 
(63) and (64), and we must deal with them. They are coupled in a 
way that does not allow a tidy separation trick like the one with 𝑧𝑧𝑧𝑧. 
Another approach is needed.  
 

LLaaggrraannggee  PPooiinnttss  aass  aann  EEiiggeennvvaalluuee  PPrroobblleemm  
 
     To save typographical space in what follows, denote 
[ 𝜕𝜕𝜕𝜕2𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2⁄ ] 𝟎𝟎𝟎𝟎 ≡ 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 and similarly for the other second 
derivatives. Let’s write Eqs. (63) and (64) as a matrix equation:  
 

 �

𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥
𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥 𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

0 2𝑧𝑧𝑧𝑧
𝑧2𝑧𝑧𝑧𝑧 0

0        0
0        0

1       0
0       1

��

𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦
𝜀𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦

� =  
𝑑𝑑𝑑𝑑 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 �

𝜀𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦
𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦

� .         (65) 

 

The information in the column matrix �𝜺𝜺𝜺𝜺𝜺𝜺𝜺𝜺𝜀 � describes the 

instantaneous state of a particle in four-dimensional ‘‘phase 
space’’9 when its location and velocity lie in the 𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦 plane. For the 
moment, let’s give the 4 × 4 matrix in Eq. (65) the name Λ. One 
way to approach Eqs. (63) and (64) is to find the eigenvalues of Λ. 
To find them and their corresponding eigenvectors is to find a set 
of basis vectors in the phase space, a set of vectors in terms of 
which any vector in the space can be written by their 
superposition.10 Suppose you have some vector |𝜕𝜕𝜕𝜕 > (written as a 
column matrix) operated on by a square matrix Γ to give a new 
vector Γ|𝜕𝜕𝜕𝜕 >. If |𝜕𝜕𝜕𝜕 > happens to be an eigenvector of Γ, then Γ 
merely rescales |𝜕𝜕𝜕𝜕 > but does not rotate it, so that Γ|𝜕𝜕𝜕𝜕 > = 𝜇𝜇𝜇𝜇|𝜕𝜕𝜕𝜕 >, 
where 𝜇𝜇𝜇𝜇 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡. In other words, (Γ 𝑧 𝜇𝜇𝜇𝜇1)|𝜕𝜕𝜕𝜕 > = |0 >, where 1 in 
this context denotes the unit matrix and |0 > the zero vector. The 
invertible matrix theorem11 says a nontrivial (but not unique) 
solution exists only if the determinant |Γ 𝑧 𝜇𝜇𝜇𝜇1| = 0. This offers an 
equation to solve for the eigenvalues. Once they are found, within 
an overall factor each eigenvector corresponding to its eigenvalue 
follows by equating vector components on both sides of 
Γ|𝜕𝜕𝜕𝜕 > = 𝜇𝜇𝜇𝜇|𝜕𝜕𝜕𝜕 >. We apply this strategy to Eq. (65). 
     However, Eq. (65) is not yet ready to be an eigenvalue equation. 

The vector |𝜀𝜀𝜀𝜀 >≡ �𝜺𝜺𝜺𝜺𝜀𝜺𝜺𝜺𝜺� appears on the right side, but �𝜺𝜺𝜺𝜺𝜺𝜺𝜺𝜺𝜀 � appears 

on the left. We need a 4 × 4 matrix 𝑌𝑌𝑌𝑌 that rearranges the latter 
vector into the former. Such a 𝑌𝑌𝑌𝑌 is easy to construct: 
 

�

𝜀𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦
𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦

� = �
0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

��

𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦
𝜀𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦

� ≡ 𝑌𝑌𝑌𝑌|𝜀𝜀𝜀𝜀 > .               (66) 

With this we introduce the matrix 𝑁𝑁𝑁𝑁 = Λ𝑌𝑌𝑌𝑌 to obtain 
 

𝑁𝑁𝑁𝑁 = �
0 2𝑧𝑧𝑧𝑧

𝑧2𝑧𝑧𝑧𝑧 0   
𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥
𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥 𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

1     0
0     1   0            0

0             0

� .                     (67) 

 
Equations (63) and (64) remain intact with 𝑁𝑁𝑁𝑁. Now we can require 
|𝜀𝜀𝜀𝜀 > to be an eigenvector of 𝑁𝑁𝑁𝑁. In other words, we require 

𝑁𝑁𝑁𝑁|𝜀𝜀𝜀𝜀 > =  𝜇𝜇𝜇𝜇|𝜀𝜀𝜀𝜀 >, where 𝜇𝜇𝜇𝜇 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡. Since 𝑁𝑁𝑁𝑁|𝜀𝜀𝜀𝜀 > = 𝑑𝑑𝑑𝑑|𝜀𝜀𝜀𝜀𝜀
𝑑𝑑𝑑𝑑𝐸𝐸𝐸𝐸

,  

 
|𝜀𝜀𝜀𝜀(𝑡𝑡𝑡𝑡) > =  𝑒𝑒𝑒𝑒𝜇𝜇𝜇𝜇𝐸𝐸𝐸𝐸|𝜀𝜀𝜀𝜀(0) > .                             (68) 

 
Any nontrivial solution requires |𝑁𝑁𝑁𝑁 𝑧 𝜇𝜇𝜇𝜇1| = 0, or 
 

�

𝑧𝜇𝜇𝜇𝜇 2𝑧𝑧𝑧𝑧
𝑧2𝑧𝑧𝑧𝑧 𝑧𝜇𝜇𝜇𝜇   

𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥
𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥 𝑧𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

1     0
0     1   𝑧𝜇𝜇𝜇𝜇            0

0            𝑧𝜇𝜇𝜇𝜇

� = 0.                (69) 

 
     Let us begin our eigenvalue quest with L4 and L5, for which 
𝑠𝑠𝑠𝑠1 = 𝑠𝑠𝑠𝑠2 = 𝑎𝑎𝑎𝑎. Equations (48)---(50) are the second derivatives 
needed for L4 and L5. The determinant of Eq. (63) gives four 
roots,12  

𝜇𝜇𝜇𝜇 = ±
𝑖𝑖𝑖𝑖𝑧𝑧𝑧𝑧
2
�2 ± �27𝐺𝐺𝐺𝐺2 𝑧 23 ,                         (70) 

 

where we recall that 𝐺𝐺𝐺𝐺 = (𝑚𝑚𝑚𝑚1 𝑧𝑚𝑚𝑚𝑚2) 𝐺𝐺𝐺𝐺⁄ . 
     It takes only one positive real eigenvalue to render a Lagrange 
point unstable, because any 𝜺𝜺𝜺𝜺 will in general be a superposition of 
all four eigenvectors, including any with a positive real eigenvalue, 
which by Eq. (68) renders the point unstable. Orbital motion-----and 
thus relative stability-----about L4 and L5 will result in cases where 
all the 𝜇𝜇𝜇𝜇 are imaginary, which requires 27𝐺𝐺𝐺𝐺2 𝑧 23 ≥ 0, or 𝐺𝐺𝐺𝐺 ≥
�23 27⁄   ≈ 0.923. This in turn requires 𝑚𝑚𝑚𝑚1 ≥ 24.96𝑚𝑚𝑚𝑚2. When this 
is satisfied, then 2 𝑧 √27𝐺𝐺𝐺𝐺2 𝑧 23 > 0, and the 𝑖𝑖𝑖𝑖 in Eq. (70) survives 
for all four eigenvalues. Thus a satellite displaced off of L4 or L5 
can orbit the Lagrange point-----orbiting a point in space!-----if the 
heavier body’s mass is at least about 25 times that of the smaller 
one. When this happens, asteroids orbiting L4 or L5 are called 
Trojans, after the three asteroids Agamemnon, Achilles, and 
Hector (names borrowed from Trojan War characters), the 
dominant rocks among some five thousand asteroids that orbit the 
Sun–Jupiter system’s L4 and L5. In 2010 NASA's WISE telescope 
found the first Trojan asteroid at L4 in the Sun–Earth system.13 
     Turning to L1 for the Sun–Earth system, when we insert Eqs. 
(52) and (53) into Eq. (67) we find two real and two imaginary 
eigenvalues14: 

𝜇𝜇𝜇𝜇 =  ±√304  𝑧𝑧𝑧𝑧 ,   ± 𝑖𝑖𝑖𝑖√304  𝑧𝑧𝑧𝑧 .                       (71) 
 
The positive real eigenvalue shows in Eq. (68) that a satellite that 
slips off of the Sun–Earth L1 will be driven away with a 1/𝑒𝑒𝑒𝑒 time of 
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1 𝜇𝜇𝜇𝜇⁄ ≈ 23 days, where 𝜔𝜔𝜔𝜔 = 2𝜋𝜋𝜋𝜋 rad/yr. A satellite stationed at L1 
requires frequent positional adjustments to remain near L1 for 
much longer than a couple of weeks.  
     By the same method, similar results hold for L2 and L3-----they 
also have at least one positive real eigenvalue. The 1/𝑒𝑒𝑒𝑒  time for 
the Sun–Earth L2 is about the same as for L1, but for L3 the 1/𝑒𝑒𝑒𝑒 
time is about 150 years. With L3 always on the side of the Sun 
opposite the Earth, science fiction writers have fun imagining a 
planet at L3 that diabolical aliens use as a base for an attack on 
Earth. Happily for Earth, the aliens would have to bring their own 
planet with them and park it at L3, because the time required for 
a planet to establish itself there by usual planet-building 
mechanisms comes up a bit short! 
     Enjoy and appreciate those marvelous JWST images! 

RReeffeerreenncceess  
7. These results agree with those of Neil J. Cornish in ‘‘The 
Lagrange Points,’’ a document created for WMAP Education and 
Outreach, map.gsfc.nasa.gov/ContentMedia/lagrange.pdf.
8. Suggestions for the algebra: Let 𝛾𝛾𝛾𝛾  ≡ 3�𝛼𝛼𝛼𝛼 ⁄3 in 𝑠𝑠𝑠𝑠 1 = 𝑟𝑟𝑟𝑟 1 + 
𝑥𝑥𝑥𝑥  = 𝑎𝑎𝑎𝑎 (1 + 𝛼𝛼𝛼𝛼  − 𝛾𝛾𝛾𝛾 ) and 𝑠𝑠𝑠𝑠 2 = 𝑟𝑟𝑟𝑟 2 − 𝑥𝑥𝑥𝑥  = 𝑎𝑎𝑎𝑎 (𝛽𝛽𝛽𝛽  − 1 + 
𝛾𝛾𝛾𝛾 ). Use 𝛽𝛽𝛽𝛽  ≈ 1, 𝑚𝑚𝑚𝑚 1 ≈ 𝐺𝐺𝐺𝐺 , and from Eq. (31) write 𝑚𝑚𝑚𝑚 2 =  
≈ 1. Where Cornish7 obtains 𝜑𝜑𝜑𝜑 𝜔𝜔𝜔𝜔  = −9𝜔𝜔𝜔𝜔 2, I obtain 
−10𝜔𝜔𝜔𝜔 2; we agree on 𝜑𝜑𝜑𝜑 𝜔𝜔𝜔𝜔  and𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦. Both are making approximations. 

9. If a particle moves in N spatial dimensions, there are 2N phase-
space coordinates, an instantaneous position coordinate and an
instantaneous velocity coordinate, for each dimension. For
example, a one-dimensional simple harmonic oscillator has

energy 𝐸𝐸𝐸𝐸 =  1
2
𝑚𝑚𝑚𝑚𝜔𝜔𝜔𝜔2 + 1

2
𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥2. Dividing by the constant energy, this 

gives the equation of an ellipse in x-v space, 1 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

2𝐸𝐸𝐸𝐸
+ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2

2𝐸𝐸𝐸𝐸
 . At any

instant the state of the simple harmonic oscillator can be specified 
by its (𝑥𝑥𝑥𝑥,𝜔𝜔𝜔𝜔) coordinates on this ellipse. Canonical momentum 
coordinates rather than velocities are more typically used to map 
phase space, because (recalling Lagrangian and Hamiltonian 
mechanics) position and momentum are canonically conjugate 
variables.  
10. For example, �̂�𝐢𝐢𝐢, �̂�𝐣𝐣𝐣, and �̂�𝐤𝐤𝐤 form a basis for all vectors in xyz space.
11. For the invertible matrix theorem, see, e.g., David C. Lay, Linear 
Algebra and Its Applications, 3rd ed. (London: Pearson, 2006), pp.
129---130.
12. Because of the ubiquitous 𝜔𝜔𝜔𝜔2 in the second derivatives, I find it
convenient to write 𝜇𝜇𝜇𝜇 ≡ 𝛾𝛾𝛾𝛾𝜔𝜔𝜔𝜔2 for some 𝛾𝛾𝛾𝛾. Then Eq. (69) gives
𝛾𝛾𝛾𝛾4𝜔𝜔𝜔𝜔4 + 𝛾𝛾𝛾𝛾2𝜔𝜔𝜔𝜔2 + (27 16)(1− 𝐺𝐺𝐺𝐺2) = 0.⁄  Setting 𝑢𝑢𝑢𝑢 =  (𝛾𝛾𝛾𝛾𝜔𝜔𝜔𝜔)2 offers a
quadratic equation for u. Reversing back through the changes of
variables gives Eq. (70). The eigenvalue 𝜇𝜇𝜇𝜇, which is a frequency,
gives the more rigorous version of the business with 𝜔𝜔𝜔𝜔𝜔 in the lines 
below Eq. (55).
13. nasa.gov/mission_pages/WISE/news/wise20110727.html

14. Cornish7 obtains for these eigenvalues 𝜇𝜇𝜇𝜇 = ± 𝜔𝜔𝜔𝜔 �1 + 2√7 ≈

±2.508𝜔𝜔𝜔𝜔 and ± 𝑖𝑖𝑖𝑖 𝜔𝜔𝜔𝜔�2√7− 1  ≈ ±2.072 𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔 , whereas I obtain
√304 ≈ 2.340 as the real numerical coefficient in all four
eigenvalues. My approximations are probably cruder than those of
Cornish, who supplies few details of his intermediate steps. My
purpose here is to illustrate how the Lagrange points are deduced, 
the logic that connects premise to conclusion, over obtaining
precise values for the final results. For high precision, numerical
methods are recommended. NASA needs high precision; a single
satellite consumes the careers of many people.

FFiigguurree  55::  In this near-infrared JWST image, ionized hydrogen (cyan) wraps around an infrared-dark cloud while other clouds appear bright (pink). 
Credit: NASA, ESA, CSA, STScI, Samuel Crowe (UVA). 

and

science.nasa.gov/resource/what-is-a-lagrange-point

1 𝜇𝜇𝜇𝜇⁄ ≈ 23 days, where 𝜔𝜔𝜔𝜔 = 2𝜋𝜋𝜋𝜋 rad/yr. A satellite stationed at L1 
requires frequent positional adjustments to remain near L1 for 
much longer than a couple of weeks.  
     By the same method, similar results hold for L2 and L3-----they 
also have at least one positive real eigenvalue. The 1/𝑒𝑒𝑒𝑒  time for 
the Sun–Earth L2 is about the same as for L1, but for L3 the 1/𝑒𝑒𝑒𝑒 
time is about 150 years. With L3 always on the side of the Sun 
opposite the Earth, science fiction writers have fun imagining a 
planet at L3 that diabolical aliens use as a base for an attack on 
Earth. Happily for Earth, the aliens would have to bring their own 
planet with them and park it at L3, because the time required for 
a planet to establish itself there by usual planet-building 
mechanisms comes up a bit short! 
     Enjoy and appreciate those marvelous JWST images! 
 
RReeffeerreenncceess  
7. These results agree with those of Neil J. Cornish in ‘‘The 
Lagrange Points,’’ a document created for WMAP Education and 
Outreach, map.gsfc.nasa.gov/ContentMedia/lagrange.pdf. 

8. Suggestions for the algebra: Let 𝛾𝛾𝛾𝛾 𝛾 𝛾𝛾𝛾𝛾𝛾 3⁄3  in 𝑠𝑠𝑠𝑠1 =  𝑟𝑟𝑟𝑟1 + 𝑥𝑥𝑥𝑥 =
𝑎𝑎𝑎𝑎(1 + 𝛾𝛾𝛾𝛾 𝛼  𝛾𝛾𝛾𝛾) and 𝑠𝑠𝑠𝑠2 = 𝑟𝑟𝑟𝑟2 𝛼 𝑥𝑥𝑥𝑥 = 𝑎𝑎𝑎𝑎(𝛽𝛽𝛽𝛽 𝛼 1 + 𝛾𝛾𝛾𝛾). Use 𝛽𝛽𝛽𝛽 ≈ 1, 𝑚𝑚𝑚𝑚1 ≈
𝐺𝐺𝐺𝐺, and from Eq. (31) write 𝑚𝑚𝑚𝑚2 =  𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺 ≈ 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚1. Where Cornish7 
obtains 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 =  𝛼9𝜔𝜔𝜔𝜔2, I obtain 𝛼10𝜔𝜔𝜔𝜔2; we agree on 𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 and 

𝜑𝜑𝜑𝜑𝜔𝜔𝜔𝜔𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦. Both are making approximations. 

9. If a particle moves in N spatial dimensions, there are 2N phase-
space coordinates, an instantaneous position coordinate and an 
instantaneous velocity coordinate, for each dimension. For 
example, a one-dimensional simple harmonic oscillator has 

energy 𝐸𝐸𝐸𝐸 =  1
2
𝑚𝑚𝑚𝑚𝜔𝜔𝜔𝜔2 + 1

2
𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥2. Dividing by the constant energy, this 

gives the equation of an ellipse in x-v space, 1 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

2𝐸𝐸𝐸𝐸
+ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2

2𝐸𝐸𝐸𝐸
 . At any  

instant the state of the simple harmonic oscillator can be specified 
by its (𝑥𝑥𝑥𝑥,𝜔𝜔𝜔𝜔) coordinates on this ellipse. Canonical momentum 
coordinates rather than velocities are more typically used to map 
phase space, because (recalling Lagrangian and Hamiltonian 
mechanics) position and momentum are canonically conjugate 
variables.  
10. For example, �̂�𝐢𝐢𝐢, �̂�𝐣𝐣𝐣, and �̂�𝐤𝐤𝐤 form a basis for all vectors in xyz space. 
11. For the invertible matrix theorem, see, e.g., David C. Lay, Linear 
Algebra and Its Applications, 3rd ed. (London: Pearson, 2006), pp. 
129---130.  
12. Because of the ubiquitous 𝜔𝜔𝜔𝜔2 in the second derivatives, I find it 
convenient to write 𝜇𝜇𝜇𝜇 𝛾 𝛾𝛾𝛾𝛾𝜔𝜔𝜔𝜔2 for some 𝛾𝛾𝛾𝛾. Then Eq. (69) gives 
𝛾𝛾𝛾𝛾4𝜔𝜔𝜔𝜔4 + 𝛾𝛾𝛾𝛾2𝜔𝜔𝜔𝜔2 + (27 16)(1𝛼 𝐺𝐺𝐺𝐺2) = 0.⁄  Setting 𝑢𝑢𝑢𝑢 =  (𝛾𝛾𝛾𝛾𝜔𝜔𝜔𝜔)2 offers a 
quadratic equation for u. Reversing back through the changes of 
variables gives Eq. (70). The eigenvalue 𝜇𝜇𝜇𝜇, which is a frequency, 
gives the more rigorous version of the business with 𝜔𝜔𝜔𝜔𝜔 in the lines 
below Eq. (55). 
13. nasa.gov/mission_pages/WISE/news/wise20110727.html 

14. Cornish7 obtains for these eigenvalues 𝜇𝜇𝜇𝜇 = ± 𝜔𝜔𝜔𝜔 𝛾1 + 2√7 ≈

±2.508𝜔𝜔𝜔𝜔 and ± 𝑖𝑖𝑖𝑖 𝜔𝜔𝜔𝜔𝛾2√7𝛼 1  ≈ ±2.072 𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔 , whereas I obtain 
√304 ≈ 2.340 as the real numerical coefficient in all four 
eigenvalues. My approximations are probably cruder than those of 
Cornish, who supplies few details of his intermediate steps. My 
purpose here is to illustrate how the Lagrange points are deduced, 
connecting premise to conclusion over obtaining precise values 
for the final results. For high precision, numerical methods are 
recommended. NASA needs high precision; a single satellite 
consumes the careers of many people.  

 

FFiigguurree  55::  In this near-infrared JWST image, ionized hydrogen (cyan) wraps around an infrared-dark cloud while other clouds appear bright (pink).  
Credit: NASA, ESA, CSA, STScI, Samuel Crowe (UVA). 


