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Abstract: We present a further simplified derivation of a “truly elementary” proof of Bertrand’s theorem, which predicts
the exponents in central power-law potentials that produce closed orbits.

INTRODUCTION

Bertrand’s theorem' proves that for a central force power-law potential energy ¥(r) ~ 1, closed orbits exist only
for n =—1 and +2. An elegant “truly elementary” proof of the theorem was recently published by S. Chin.2 Here we
streamline the theorem’s proof further, making it even more elementary.

We review criteria for an orbit to be closed, outline a strategy for determining which values of n give a closed
orbit, then consider cases of negative and positive n. To make this note self-contained, we develop an argument along
the lines of Chin’s, but indicate where we introduce an additional simplification. For comparison, Chin’s argument
we replace is presented in the Appendix.

CLOSED ORBITS: CRITERIA, STRATEGY, AND CASES
Closed Orbit Criteria and Strategy

In central force motion, the force and potential energy depend only on the distance between the force center and
the particle, suggesting the use of spherical coordinates (7, 0, ¢). Because angular momentum is conserved, the orbit
may be mapped in the 8 = n/2 plane, and the trajectory specified as » = r(¢). In a closed orbit, let 7, be the maximum
and r; be the minimum values of . The angle @a between them, the apsidal angle, is one-half the spatial angular
period for the radial oscillation »» — r — r, (Fig. 1).



FIGURE 1. For the curve (red) the apsidal angle @A is /4.

For an orbit to close in an integral number M revolutions so that (¢ + 2nM) = r(¢), an integral number N periods
of the radial oscillation must fit into 2nM. Thus 2¢aN = 2nM, or

94 = m/R (1)
where R is a rational number.

An effective way to predict a particle’s orbit in a central potential employs the conservation of energy and angular
momentum.® Since the particle of reduced mass m moves with velocity

v =P+ ()P )
(overdots denote time derivatives), the angular momentum is
L= (mrig)z. 3)

Using Egs. (2) and (3), the mechanical energy E is

2

E = %mi‘z + + V(r). 4

L
2mr?
The L?*2mr?* contribution to the kinetic energy behaves mathematically like a repulsive 1/72 potential energy; it is

sometimes called the “centrifugal potential.” Together with the potential energy V(r) they make the effective potential
Ve(r):

12

Ve(r) =

+ V(). Q)

2mr?

Solving Eq. (5) for 7 = Z—;q'), again using Eq. (3) and introducing

u=1/r, (6)

Eq. (5) yields an integration for ¢ = ¢(7),



00) = VB e ™

where B = L?*2m. After integrating, ¢ = ¢(7) is inverted to obtain » = (¢), and closure (or not) of the orbit may be
judged directly by seeing whether (¢ + 2nM) = r(¢) for integer M. For n = —1 (planetary orbits or Rutherford
scattering), inverting ¢(r) produces a conic section a/r =1 + € cos ¢. For n =2 (mass on a radial spring), inverting
() gives (a/r)> = 1 — sin(29). Clearly, an elegant proof of Bertrand’s theorem would be straightforward if the
antiderivative of the integrand in Eq. (7) presented itself as a function of n for any potential of the form V(u™") ~ u™.
Unfortunately, ¢(r) as a function of arbitrary # is not forthcoming. Another approach must be attempted.

Solving Eq. (4) for 7 = Z—;q‘o and using Eq. (3) to replace angular velocity with angular momentum, so that

dr dr L
—¢@ = ———, leads to
d(p(p do mr?’

(&) =E-vm. ®)

Recalling u = 1/r and, following Chin, defining

L2/m = m* 9
Eq. (8) may be recast as
1 fau\? 1, o, —1
E—Em (%) +omiu + V™). (10)

The last two terms are the effective potential in terms of u,
V@) = V@)= %m*uz + V(™). (11)

In u-space Eq. (10) has the same mathematical form as the kinetic energy plus potential energy of a simple harmonic
oscillator—plus a perturbation, V (u™1). IfV(u™1), like %m*uzalso happens to be quadratic in u, then the entire Ve(7)
is quadratic in u takes the form

V() = Syu? (12)

for some constant y. Should that occur, then u ~ cos(wg) where w? = y/m*. The criteria for a closed orbit, Eq. (1),
becomes

Pa= = (13)

where, according to Eq. (1), ® must be a rational number. Of course, V'(7) is not always quadratic in u. But if a Taylor
series expansion of the effective potential is dominated by the quadratic term, then the argument about y = m*®? holds.
As noted, the potential 7 can be seen as a perturbation. Since we are dealing with bound orbits, closed or not, let
us suppose the system that V perturbs is a circular orbit of radius 7, = 1/u,. The effective potential therefore has a
minimum at this radius (see Fig. 2). Let us expand the effective potential V() in a Taylor series about u = u,:

ave
du

Vo) = Vi) + (= up) [5] + S u—up?[5] 4 (14)
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FIGURE 2. The 1/r? (top red) curve is the angular momentum’s contribution to Ve(r); the bottom (green) curve illustrates an
attractive potential, in this instance V(r) ~ —1/r; and the curve (yellow) with the minimum at », represents the effective potential

Ve(r) .

]u =T. The

. .. . . dazv,
With Ve(u) a minimum at u,, the first derivative term vanishes. Denote Ve(uo) = Eo, u — 1o = €, and [duf

Taylor series may be written
V,(w) = E, + §s2r+---. (15)

Now Eq. (10) may be restated
2
Sm* (S2) + 1re? + - (16)

E — Eo = E e
By examining I, which depends on the second derivative of V%, let us see what constraints it imposes on power-law
potentials in producing closed orbits. The first derivative of V. with respect to u is, in terms of V(r),

e _ o+ avar e, LAV,

du mau dr du mu u2dr’ a7

and thus the second derivative becomes
a?ve 2 av 1 d?v
we - Mt Gt wae (18)

19)

At u = u, we obtain
r _ 3V (ro)+1v' (1)
- Vi(ro)

3

For this T to be the y = m*®? of Eq. (12), ['/m* must be a positive real number. The question now becomes, what

potentials V(#) allow this to happen? Define the function
_ 3 @)+rv! (1)
fr) = 20O, 20)

Since f'(ro) = I'/m* = const. > 0. Therefore for r = r, we can say that f'(r) = C = const. > 0. Then Eq, (20) gives
21)

3V + V" =V
or
(C—-3)V = r% (22)



which integrates to
V' =(C—3)nr+Ink (23)
or dV/dr = kr ©=3 where k = const. Letting n = C — 2, a second integration yields
V() = %r”. 24)

Recalling that I'/m* = C = n + 2, and assuming that further terms in the Taylor series may be neglected, we have our
simple harmonic oscillator’s angular frequency,

= ng VT (25)

The criteria for the orbit to be closed, Eq. (1), requires vn + 2 to be a rational number. Clearly n =—1 and n = +2
make o a rational number, but what other values of n might produce closed orbits? Why not n =7 or 23 or 34? Even

though these choices make Vn + 2 an integer, evidently the rationality of vn + 2 is a necessary but not sufficient
condition for the orbit to be closed, because the potential ¥(r) ~ " is also constrained by Newtonian mechanics. To
find values of n that work, let us divide the real numbers into two groups, n < 0, and n > 0, and see how the principles

of mechanics constrain the values of n that make vn + 2 rational.
The n <0 Case

For n <0, let n = —s with s > 0 (note that Eq. (25) requires —2 < n < 0). Then V(r) = (k/n)r* = —(k/s)r— =
—(k/s)u’, and Eq.(10) takes the form

2
E=im (d—u) +imu? - Lys (26)
2 do 2 s
or
2
Eu=s =im'u~s (d—u) +imruzes - K 27
2 de 2 s

With the change of variable x = 1™, Eq. (27) says

Eu™+ 5= m’ (%)2 (Z—Z)Z +imx2, (28)

For an orbit to be bound with an inverse power-law potential requires £ < 0. Since the power-law exponent does not
depend on the energy, let £ — 0, when the particle become barely bound. Then Eq. (28) reduces to

P ) () +ime @)

which is mathematically identical to the expression for the energy of a simple harmonic oscillator of total energy /s,
mass 4m*/(2 — s5)? and spring constant m*. It therefore has the angular frequency

2-s
= == 30
Wo m*(%)z > (30)

In a simple harmonic oscillator’s motion, the coordinate may be positive or negative, oscillating with period 7T, =
2m/m, about the origin. But since x = 1>~ = 1/#*~ and r> 0, in the graph of the “potential energy” sm*x?, the “motion”
can take place only on the x > 0 side of the parabola. Therefore the period is 7= YT, so that ® = 2w,. The condition
for a closed orbit, Eq. (1), now says



But we also require, from Eq. (25),
(32)

Agreement between both expressions for garequires 2 +n = +2 + n and thus n = —1. The only closed orbit that
results when n <0 is n = —1.

The n > 0 Case
Turning to n > 0, Eq. (10) becomes
1 fau\? 1, 5 k1
E—Em (%) +Emu +;u_" (33)

Following the same procedure as in the n < 0 case, we multiply Eq. (33) by u" then let x? = 4>'". In this way Eq. (33)
is recast as

E ke () (2Y e, (34)

r 2 2+n 2

Before going further, we note a difficulty. If (E/r") — (k/n) could somehow approach a constant, then Eq. (34) would
describe a simple harmonic oscillator of angular frequency

m* 2+n

w= |—== = (35)

2
mim)

which is identical to the » < 0 argument that led to n =—1, and therefore contradicts the hypothesis that n > 0. Another
approach must be found.

Chin found a clever solution around this problem (see Appendix). However, at this point our approach differs
from Chin’s. Both approaches are correct; we offer one that we find even simpler.

Here is how we see it: With the power-law potential V' ~ 7 for n > 0, for small r (large x) the effective potential is
dominated by the 1/# centrifugal potential, which goes to infinity as » — 0 (z — ). For large r (small ) the potential
energy V ~ " dominates, and goes to infinity as » — oo, i.e., x — 0 (see Fig. 3). The particle is always bound, and r
can be made as small or as large as we like if £ is sufficiently large. Consider two extreme cases with large E: (a)
small 7, and (b) large r.

Effective
FPotential




FIGURE 3. The effective potential (red curve) with large E (the horizontal line).

(a) For large E and small r (large ) Eq. (10) becomes

1o faw\? 1, o,
E ~im (E) +im'u (36)

which describes a simple harmonic oscillator of angular frequency w, = /m*/m* = 1. Since u > 0, only the positive
side of the simple harmonic potential is accessible; thus the frequency is ® =2m,, and by Egs. (1) and (32) we have

s s

which gives n = 2. So far so good, but we must verify that n = 2 is consistent with the other extreme.

(b) For large E and large  (small ), the centrifugal potential is negligible, and with n =2,

1L fdu\? |k,
E ~>m (E) + 272, (38)

Since u = 1/r, by the chain rule and with Egs. (3) and (10) it follows that

du mr
w= "L (39)

which restores Eq. (38) back into the original expression for a simple harmonic oscillator subjected to the force - k7

1 .5 L? 1, 5
E=-mr+ —+-kr-. (40)
2 2mr?2 2

Evidently, the only closed orbit that results when n > 0 is n = +2.
In summary, for a particle moving in a central potential V(r) = k", the orbit will be closed for only two values of
n:—1 and +2. This is Bertrand’s theorem.

APPENDIX
Another Approach When n > 0.
In his excellent paper, S. A. Chin? took another approach to finding solutions for #n > 0. Return to Eq. (33) and
consider the turning points, where the kinetic energy vanishes. Let u; and u be the turning points corresponding to

the smallest radius 7 (u; = 1/r1) and the largest radius r, (42 = 1/r;). With ux denoting either u; or u», at the turning
points the total energy is entirely carried by the effective potential, so that

E=V,(uh= %m"u,zC + %u,:" (41)

where n > 0. The orbit is bound, so as £ — oo, r can become very small (u very large). For large E and large u the
centrifugal potential dominates, and so

E ~-m'u}= Ey. (42)
Let us now form the ratio
-1
A(u) = M (43)

Eq



which by Egs. (41)-(42) becomes

ku™m
nEq

2
Aw) = Z—% +

Let x = u/u;. Now Eq. (44) can be rearranged into the form

n/2 X~

1+n/2*
1

) x4 5

As E; — o, A(x) = x?, or Ve= E\x*. Return this to Eq. (33), which becomes

1 *duz 2
E ~om (da) + E;x“°.

Noting that u = ux, it follows that

du

_ 2E, dx
do ~ A/ m* d6

and thus

E ~ E, [(Z—Z)z + xz].

This can be rearranged to resemble the energy of a simple harmonic oscillator:

2
E 1 (dx 1
—=—(—) +-x?
2E; 2 \d6 2

(44)

(45)

(46)

(47)

(48)

(49)

which has angular frequency o, = 1, and again since only the positive half of the harmonic oscillator potential can be

used, one obtains @ = 2, and thus from Eqgs. (13) and (32), n = 2.
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